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Recursive Expectation-Maximization (EM)
Algorithms for Time-Varying Parameters with

Applications to Multiple Target Tracking
Liron Frenkel and Meir Feder,Fellow, IEEE

Abstract— We investigate the application of expectation-
maximization (EM) algorithms to the classical problem of
multiple target tracking (MTT) for a known number of targets.
Conventional algorithms, which deal with this problem, have
a computational complexity that depends exponentially on
the number of targets, and usually divide the problem into a
localization stage and a tracking stage. The new algorithms
achieve a linear dependency and integrate these two stages.
Three optimization criteria are proposed, using deterministic
and stochastic dynamic models for the targets.

I. INTRODUCTION

T HE PROBLEM of tracking superimposed signals em-
bedded in noise is important in sonar, radar, spectral

estimation, and other fields. The observed data , ,
, , can be a nonlinear noisy function of the

trajectories’ parameters , , , ,

(1)

where

time interval index;
vector of elements composed of superimposed
signals ;
observation noise.

In an active sonar problem, for example, a signal is sent each
time interval , and its reflections from the targets are
received by an array of sensors. holds the received
data, and each one of its elements corresponds to one sensor.
The received data is a function of the parameters, which can
be the locations and velocities of the targets, for each time
interval (Fig. 1).

The parameters themselves can be modeled as a sto-
chastic process or as a deterministic vector. The problem is
to estimate the parameters given a model for parame-
ters’ dynamics. A direct attempt to solve the problem with
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Fig. 1. Active sonar problem with five sensors (M = 5) and two targets
(N = 2). At each time interval (k), the sonar sends a signal that is reflected
from the moving targets and received by the sensors. The algorithm must
estimate the targets’ locations and velocities (�

(n)
k

) from this data.

an exact MAP or maximum likelihood estimation of these
parameters will produce an algorithm with a computational
complexity that is exponential with respect to the number of
the snapshots and the targets. Consequently, the algorithms
that are traditionally used for multiple target tracking (MTT)
are not optimal in the sense that the problem is usually
considered in two separate stages:localization, in which the
new parameters are estimated from the recent snapshot

, and tracking, which makes use of some estimations
from the localization part to produce the final track. Even the
estimation in the localization part is usually not optimal (in a
minimum estimation error sense) because optimality requires
a computational complexity that depends exponentially on the
number of the targets.

In this paper, we investigate the application of the EM
algorithm to this classical problem of MTT with a known
number of targets. The algorithms that are used integrate the
localization stage with the tracking stage and achieve a linear
computational complexity with respect to the targets number.
The algorithms must be sequential in order to avoid accu-
mulating data and calculations and to produce a continuous
parameters’ estimate.

The organization of the paper is as follows. In Section III,
we define adeterministicdynamic model for the parameters
with a “forgetting” mechanism that allows changes over time.
As an example, we use straight lines to model the targets’
trajectories. The parameters’ estimation can be accomplished
by a multiparameter maximum likelihood search. Using a
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Fig. 2. EM–Kalman algorithm.

computationally efficient recursive EM algorithm, the search
over targets and time is avoided. Applying, further, a Newton
approximation, we obtain a new, fast stochastic algorithm that
benefits from the given model.

In Section IV, we describe a second approach that uses a
Bayesian model with aMSE estimationcriterion. The parame-
ters are modeled as a stochastic process, and the observations
are a nonlinear noisy function of this process. In this case,
complete integration of the localization and the tracking is
not possible. We use the EM algorithm for localization and
Kalman filtering for tracking with feedback to the localization
stage.

In Section V, we take a third approach, which uses
a Bayesian model withMAP estimation criterion. The
parameters’ values are taken from a finite set of states
(for example, a finite grid of locations). The process ,

is modeled as a discrete Markov chain,
and the probabilistic description of the process is assumed
to be known. This process is not observed directly (it is
hidden). The algorithm that estimates the parameters from the
observed data is described in [5]. In [6] and [7], this algorithm
is applied to tracking time-varying tones embedded in noise.
We shall refer to this algorithm as thehidden Markov model
(HMM) algorithm. The HMM algorithm does not reduce the
exponential dependence of the computational complexity on
the targets’ number. However, integrating the EM algorithm
with the HMM algorithm eliminates this problem. In the next
section, we briefly review the EM algorithm (see Figs. 2 and
3). For the derivation of the EM algorithm, see [10].

II. THE EM ALGORITHM

Given a conditional probability density , the max-
imum likelihood (ML) estimation of the parameters vector
from the observed data is

argmax

If the vector contains several unknowns [such as locations
and velocities of multiple targets at different snapshots in our
model (1)], this maximization tends to be very complex.

One of the reasons why it is difficult to maximize the
likelihood function is that the observed datais “incomplete.”
Let denote a “complete data.” For our purposes, the
complete data is any vector such that

where is a noninvertable (many-to-one) transformation.
This relation means that we observe the complete data only
through a noninvertable transformation, where this transfor-
mation generally causes a reduction in the available data. In
the superimposed signals problem, the incomplete datais
sum of the signals in (1), and the complete datacan be the
observation of each signal separately.

The EM algorithm starts with an arbitrary initial guess
(hereafter denoted , which is the current estimate ofafter

iterations of the algorithm). The subsequent iteration cycle
can then be described in two steps as

E step:

compute (2)

M step:

(3)

where is the probability density of the “complete
data,” which is a function of , and is a conditional
expectation given .

If is continuous in both and , the algorithm
converges to a stationary point of the log-likelihood function
where the maximization in (3) ensures that each iteration cycle
increases the likelihood until a local maximum is reached.

We utilize those previous results to develop the algorithms
in the sequel. Three major approaches are proposed.

III. M AXIMUM LIKELIHOOD ESTIMATION

AND THE EM–NEWTON ALGORITHM

The first approach uses a deterministic model for the param-
eters. A “forgetting” mechanism is used to allow changes over
time. First, we derive a general algorithm under the assumption
that the data is characterized by a probability density that is
a function of the parameters. We then apply this algorithm to
the special case of superimposed signals. We end the section
with a detailed example of time delayed signals.
A. A General Algorithm

Suppose , are indepen-
dent snapshots (the incomplete data), each with a probability
density . The parameters are unknown vectors
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that vary according to

(4)

where is a constant invertible transition matrix. According
to this model, estimating the last parameter will automat-
ically derive the estimation of all the preceding parameters.
Consequently, the parameters estimation can be accomplished
by a multiparametermaximum likelihoodsearch on . Using
a computationally efficient recursive EM algorithm, the search
over the targets is avoided. Let represent
an independent complete data that is related to the observations
by

(5)

The EM algorithm starts with an arbitrary initial guess
and, after iterations, estimates by . Each iteration cycle
can be described as having the following two steps:

E: Evaluate

M:

Max

where denotes a statistical expectation with respect
to the last parameter estimation. In each iteration, all the
data has to be processed. Our goal is, however, to obtain
a recursive (sequential) method. We follow the sequential
algorithm proposed by Titterington for constant parameters [2],
and the algorithm becomes the following.

The recursive EM algorithm for deterministicaly
varying parameters:

E:

M:

Max

(6)

(7)

where each of the statistical expectations of the log-likelihood
is done once and used for the next expectation. The constant

was suggested by Weinstein and Feder [1]. For varying
parameters, is expected to be a tradeoff between good
tracking ability ( small) and noise insensitivity ( ).
This algorithm is still suffers from complexity drawbacks.
In Appendix A, we will show that the Newton second-order
approximation of the recursive EM algorithm (6) and (7) is
as follows.

The recursive EM-Newton algorithm:

(8)

(9)

where denotes the score vector, and is a
Fisher information matrix corresponding to a single complete
snapshot, that is

(10)

(11)

Notice that for Identity (constant parameters) and for
(no forgetting factor), this algorithm becomes

and for a small change of near the ML estimation ,
we obtain approximately

which is a stochastic approximation algorithm suggested by
Titterington [2] for constant parameters. The conventional
approach to handle time-varying parameters (see [9]) is to
substitute the converging series (1/) with a small positive
constant in the algorithm obtained for constant parameters,
that is

(12)

This ad hoc procedure can now be replaced by the new
EM–Newton algorithm in order to utilize a dynamic model
for the parameters.

B. Superimposed Signals Tracking

Consider the superimposed signals model (1), and let
be a zero-mean white Gaussian process whose covariance
matrix is .
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The log-likelihood function of the incomplete data is

(13)

where is independent of . The complete data can be
obtained by decomposing the observed data into its
signal components (see [3]), that is

...
(14)

where

The total noise was decomposed tocomponents

with covariance matrices
, where . The ’s are arbitrary positive

scalars satisfying

and, consequently

where

The log-likelihood function of the complete data is

(15)

where

... ...

.. .
(16)

The score is

Real

Real

The Fisher information matrix of the complete data is

Real

Real

and using (16), we obtain

Real

where is the Fisher information matrix for one target:

Real
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Remark: One way of choosing is .
However, different distributions can be used, defining different
“complete” data.

C. Example: Line Array, Far-Field Targets
with Constant Velocities

Suppose that the targets are moving approximately with
constant radial and angular velocities. If the parameters are

(17)

where , , , and are the signal time delay,
time-delay rate, angular position, and angular rate, then the
dynamic model is

where (18)

and

where ...

The baseband representation of a signal that is
received by a line array with targets at far-field and negligible
Doppler effect is

...

where

envelope of the radiated signal;
position of the ’s sensor in carrier wave lengths;
known complex amplitudes.

is the baseband representation of the modulated signal

where is the carrier frequency. Taking the derivatives of
, , , and , we obtain

...

...

Using this expression, the score and the information matrix
can be evaluated, and the EM–Newton algorithm can be used.
Note that the information matrix is initially singular due to
the fact that in this example, the radial and angular rates are
not observed directly, and two observations are needed to gain
information about the velocities.

A more careful look at this example reveals a weakness of
the algorithm in tracking signals with rapidly changing phase.
This problem is typical to stochastic approximation. Observe
that

The phases and energies in the example
above were assumed to be known constants. This is a good
model for tracking over periods in which the energy and
phases of the targets do not change considerably. However,
in the typical sonar tracking case, the energies and phases do
change. Regarding the energy tracking, can be added
to the parameters vectors with a dynamic model that will
be useful to describe slow changes. The situation is usually
different for the phase, which is a function of the time delay

. Taking the dependence of on into account, the
gradient becomes

...

...

For this model of , a small error in the estimation
of the range can cause a large error in the phase and,
consequently, an incorrect score. This is a result of an inherent
property of the likelihood function (13) that, for modulated
signals, has many modes. The large phase errors degrade
the tracking performance of the stochastic approximation
algorithm because the estimation of the range must be located
at a smaller neighborhood of the true range in order to justify
the approximation. The algorithm is, therefore, sensitive to
estimation errors in that are in the order of 1/ instead
of errors that are in the order of the duration of the signal
envelope (assuming a smooth envelope). Nevertheless, the
algorithm can still be used when the deterministic model
for the dynamics of the targets is good with respect to
the SNR. The tracking performance is better than the one
of a stochastic approximation algorithm without a dynamic
model.
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Fig. 3. EM–Kalman algorithm for time-delayed signals.

The algorithms that are described in the sequel are of a more
global nature, and the range estimation does not suffer fatal
errors due to phase errors.

IV. MSE ESTIMATION AND THE EM-KALMAN ALGORITHM

A natural approach to the problem of tracking superimposed
signals is to model the dynamic parameters as a stochastic
process. A reasonable choice would be

(19)

where is the driving noise of the parameters process,
and is the parameters describing theth signal the th
snapshot.

The data observed at snapshotare

(20)

Note that the parameter vector , which affects the observed
data , can be shorter than the full parameter vector .
Define the relation . For example, in the line
array case (17), the velocity is not measured directly, and we
can define

Two new algorithms that estimate the parameters (the
track) from the snapshots data using the Bayesian
approach are proposed: one using the MAP estimation criterion
(formulated in the next section) and the other using the MSE
criterion.

The parameter vector that minimizes the MSE criterion is

where

...
...

(21)

This estimation can be accomplished by the Kalman filter
if is linear. Unfortunately, this is usually not the
case, and a complete integration of localization and tracking
is not possible. [The extended Kalman filter can be used to
approximate by linearization of the system around the
current state estimate and application of the Kalman filter
to the resulting time-varying, linear system. However, this is
algorithm is suboptimal and fairly complex.]

In the following algorithm, localization, and tracking are
two separate blocks (in contrast to the previous algorithm
and to the algorithm in the next section, which integrates
them). Processing is done at each time interval using only data
received in that interval to update the results of the previous
processing.

A. Localization

In order to achieve a maximum likelihood localization,
are estimated from the recent observation using the EM

algorithm. The initial parameter’s value for the EM iterations
was predicted by the tracking stage. This prediction is based
on previous estimations and, therefore, is close to the actual
parameter. Thus, only a few EM iterations may be sufficient.

The complete data is defined as the decomposition of
the observed data into its signal components (recall
Section III-B). Since the complete data and the in-
complete data are jointly Gaussian and related by a
linear transformation, the complete data can be calculated in
a straightforward manner (see [3]) as

(E-step:)

(22)
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The log-likelihood function is given in (15). Taking a
conditional expectation, we obtain

(23)

The parameters , which maximize this expression, are the
recent EM estimation for . This maximization is equivalent
to

(M-step:)

Note that although the initial parameters for each target are
close to final EM estimates for that target, target switching can
still occur during the EM iterations for low SNR. Therefore, it
is advantageous to associate the EM estimates with the tracks
(e.g., by a minimum distance search or gating). In addition,
note that in the two other algorithms described in this paper,
localization and tracking are unified, and consequently, a
separate association of tracks to target locations is not required.

B. Tracking

In the tracking stage, the estimated parameters pro-
duced by the localization stage are used as the observed data.
The model for the actual parameters , which is stated in
(19), is repeated here for convenience, and the EM estimates
are modeled as a noisy measurement as in

(24)

(25)

The driving noise and the EM-estimation noise are modeled
as Gaussian, with covariance matrixes and

. The choice of depends on the
observation noise and on the shape of the likelihood
function in the neighborhood of . Using the Kalman filter,
an approximated MSE estimation can be evaluated, and a
prediction can be made, which can be used as initial the
parameter for the next EM localization stage. See the EM-
Kalman algorithm in the next column.

C. Example: Time-Delayed Signals

In many applications, is a time-delayed signal
of the form

(28)

The EM-Kalman algorithm

1. Initial states:

for (signals):

Guess state

Set initial error variance,

For (time intervals)

2. Localization:

for (iterations number):

for (signals):

E-step:

where

M-step:

3. Kalman tracking:

for (signals):

(26)

(27)

where the parameters vector is composed of the time-
delay parameter and the vector , which holds other
parameters (such as azimuth and elevation)

(29)

is an unknown additional deterministic parameter.
The matched filter can now be placed in the sensors level

as in

(30)

(31)

and is the signal’s energy.
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Substituting (30) and (31) in (26) and (28) in (27) (see
Appendix B), the following algorithm is produced.

The EM-Kalman algorithm for time
delayed signals:

1. Initial states:

for (signals):

guess state

set initial error variance,

For

2. Localization:

for (iterations number):

for (signals):

E-step:

M-step:

3. Kalman tracking:

for (signals):

(32)

V. MAP ESTIMATION AND THE EM-HMM A LGORITHM

An alternative Bayesian criterion is the MAP estimation

(33)

where the parameter vectoris composed of the vectors
(21) and modeled as a discrete stochastic process (19). The
observed data is composed of superimposed signals that are
a function of this process (1). Here, an exact solution can be
achieved by maximizing the conditioned distribution (13) over
all the parameters. However, each parameter has a value
from a set of discrete states (for example, possible
combinations of locations and velocities) and direct search
over the parameters requires calculation of the likelihood
function (13) for each state, target, and time interval, namely,

calculations. The number of calculations is, therefore,
exponential with respect to the number of observations
and to the number of signals . In this section, we first
formulate an HMM problem and briefly refer to an algorithm
that reduces the computational complexity with respect to the
observations’ number . Then, we integrate this algorithm
with the EM algorithm and reduce the dependence with respect
to the number of signals in the same way.

A. Formulating the HMM Problem

For discrete parameters, the stochastic model (19)
is a discrete, first-order, Markov chain model. Let

denote all the possible states of the vector
( is the number of all the possible combinations

of the parameters’ values for a single observation,
and a single signal ). The state transition probability

, which is the probability that
the targets reach state from state

in a single step, is determined by the
probability distribution of the driving noise. One possibility
of choosing this distribution is a discrete approximation of
the normal distribution

exp

(34)

where is some neighborhood of , which is defined for
the specific chosen parameters. The initial state distributions
are

(35)

The process is hidden; in other
words, it is not observed directly. The observations in (1)
are probabilistic functions of the process. is defined
as the continuous probability distribution of the snapshot data

that is conditioned by state . Let . For
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Gaussian observation noise , with covariance matrix

The probability measures , , , and the states number
constitutes a complete specification of an HMM. The

general HMM algorithm that uncovers the hidden part of
the model, i.e., finds that satisfies (33) given the model
parameters, is described in a tutorial fashion in [5]. The heart
of this HMM algorithm is the Viterbi algorithm, in which the
new probability of each state combination is calculated from
the one saved for time and from the new data .
This probability distribution is denoted by ,

. The number of calculations is, therefore,
proportional to and is exponential with respect to
the signal’s number . In a typical tracking sonar problem,
for example, even two superimposed signals tracking may be
unfeasible.

B. An Integrated EM–HMM Algorithm

The EM algorithm can be used to reduce this exponential
dependence in the targets’ numberto a linear dependence.
The complete data is defined, again, as the decomposition of
the observed data into its signal components (14).

In this case, the state transition matrix forone signal from
state to state is , where

(36)

The initial state distribution is , ,
and the continuous probability distribution of given
state can be defined as , where

The probability measures and the states number
define an HMM that uses the given data for observations.

Therefore, given the complete data, an HMM algorithm can
be utilized to obtain

(37)

(a)

(b)

(c)

Fig. 4. Comparison of stochastic approximation algorithms. (a) First snap-
shot, the original signal (–), and the noisy signal (-). (b) Actual track (-) and a
conventional stochastic approximation algorithm estimations (o,�). (c) Actual
track (-) and the EM–Newton algorithm estimates (o,�).

where track parameters of the th target

...
(38)

We will use this algorithm as the M-step in a EM-Algorithm.
The E-step, which produces the estimations of the complete
data, is similar to the one used for the EM–Kalman algorithm
(22).

To calculate the M-step (37) using the Viterbi algorithm,
we need to define the quantity , which is the best score
(highest probability) along a single track, afterobservations,
which accounts for the first observations and ends in state
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where is independent of . By induction

(39)

In order to keep the track that maximizes , the index
of the previous most likely state is saved in the array

. This index is the argument that maximizes (39).
The EM parameters, in this case, are all the track parameters.

The initial guess is, therefore, a guess of the initial track
of the th target.

The integrated algorithm can now be stated as follows.

The batch EM-HMM algorithm:

1. Initial track guess

for (signals):

guess track

for (EM iterations):

2. Recursion:

for (snapshots):

for (signals):

E-step:

where

M-step:

for (new state)

argmax

3. Termination:

for (signals):

argmax

4. Backtracking

for (snapshots):

for (signals):

For sufficient resolution of the parameters’ quantization, the
algorithm above is an exact EM algorithm and will produce
parameters that locally maximize the likelihood function (33).

A recursive algorithm, which uses the last observation
and does not accumulate data, can be now formulated. In
each iteration, a new observation () is used, and a new
complete data for time is estimated (E-step). The complete
data for the old observations is not changed since the old
observations data is not saved, and their complete data can
not be estimated. The M-step produces the parameters at time

that maximize the track probability given the complete data.
Only one probability matrix is required to be saved in order
to achieve this maximization.

The parameters at time are associated with the track
covered until that time, and each iteration a new parameters
vector is added to the track. The initial parameters are,
therefore, the initial guesses for signal, for the state before
the first observation, and not a full track, as in the batch
algorithm.

The recursive EM-HMM algorithm:

1. Initial state guess

for (signals):

guess state

for (observations):

2. Recursion:

for (signals):

E-step:

M-step:

for (new states indices)

argmax

(optional)

3. On line estimate:

for (signals):

argmax

4. Backtracking (optional)

for

(observations):

for (signals):

(40)

(41)

(42)

(43)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Fig. 5. Resolution performance. (a) First snapshot, the original signal (–), the noisy signal (-), a match filter resolution cell (..). (b) EM–Newton algorithm
with � = 0:9. (c) EM–Newton algorithm with� = 0:6. (d) Conventional stochastic approximation algorithm with�0 = 0:4. (e) EM–Kalman algorithm. (f)
Recursive EM–HMM algorithm. (g) Backtracking. (h) Batch EM–HMM algorithm. (i) EM–Kalman algorithm for signals with unknown phase and energy.

VI. SIMULATION

Simulations were performed for the case of a sonar with
linear array of omnidirectional sensors. The algorithms
achieved a high resolution in range and azimuth, in low
SNR, and random phase. The EM–Kalman algorithm was
implemented for the FTV three-dimensional (3-D) sonar
[4], and tested with real data. Hanning signals

cos cos for with

duration of or time units were used for all
simulations. The carrier period was normalized to a single time
unit . The delayed complex baseband representations
of the signals were sampled at a rate of one sample per time
unit and a white Gaussian noise , which was 5 dB larger
than the amplitude of the signal ,
was added. Snapshots of the Hanning baseband signals before
and after adding the noise are shown in Figs. 4(a) and 5(a).
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Fig. 4 demonstrates the advantage of using the EM–Newton
algorithm over a conventional stochastic approximation algo-
rithm when there is a good dynamic model for the targets.
Fig. 4(a) shows the first snapshot of two Hanning signals of
duration time units that were received by a single
sensor. The time delay of the signal represents the targets’
ranges. In the following snapshots, the ranges change, and
targets maneuver in sinus-like tracks. Fig. 4(b) shows the time-
delay estimations of the conventional stochastic approximation
algorithm (12) with . Tracking was not stable for any

. Fig. 4(c) shows the EM–Newton algorithm (8) and (9)
estimates, using a linear model for the track . Clearly,
for this case, there is an advantage of using the model-based
EM–Newton algorithm.

Fig. 5 compares the algorithms’ resolution performance for
known energy and phase. Two Hanning signals of duration

were received by five omnidirectional sensors
spaced half a wave length apart on a straight line. These
signals had a longer time span than the signals of Fig. 1 and,
therefore, were more difficult to separate. The dotted lines
in the figures bounds a resolution cell. Inside this cell, a
conventional matched filter fails to separate the two targets.
The signals are then getting closer, moving in curved tracks
that are modeled by straight lines. All the algorithms manage
to track for this SNR and resolution.

The EM–Newtonalgorithm was used with forgetting factor
of and initial time delay within the signal duration
[Fig. 5(b)]. is the only parameter that has to be predeter-
mined. The tracking was found to be very robust with respect
to this parameter, and tracks were not lost for lowvalues,
in spite of the noisy tracking [see Fig. 5(c) for ].
The conventional stochastic approximation algorithm fails to
follow the crossed track since it does not estimate the velocity
[Fig. 5(d)]. Notice that the reason for this failure is different
from the example of Fig 4. For the example of Fig. 5, the
EM–Newton algorithm uses the better model to resolve the
targets interference, whereas in the example of Fig. 4, it was
used to keep the location estimation in the neighborhood of
the signal.

The EM–Kalman algorithm for time-delayed signals has
a more global nature and, therefore, was less sensitive to
starting conditions and temporary losses of track. On the other
hand, more parameters must be established in order to set a
satisfactory Bayesian dynamic model for the system. Results
are plotted in Fig. 5(e) for four iterations per snapshot.

The recursive EM–HMMalgorithm results for this example
are shown in Fig. 5(f). The track is not smooth since every new
location may be the ending point of a completely different
track. Backtracking can be done at each stage to reveal the
track that was last chosen. The track of Fig. 5(g), for example,
is the result of a such back tracking taken at the last snapshot
of Fig. 5(f). This is the most probable track under the model
assumptions, given the complete data estimation. Using the
track of the recursive EM–HMM algorithm in Fig. 5(g) as an
initial parameter (iteration #0), the batch EM–HMM algorithm
produces the track of Fig. 5(h).

The algorithms were tested with modulated signals, of
unknown energy and phase. The energy uncertainty introduced

Fig. 6. Two-dimensional tracking with five omnidirectional sensors.

only a small degradation in tracking. Phase estimation required
more EM iterations for each snapshot. The track in Fig. 5(i) is
the result of the EM–Kalman algorithm for the same example,
with unknown energy and phases of the signals, and 16
iterations per snapshot.

Figs. 6 and 7 demonstrate an application of the algorithms
to tracking two and three dimensions. The five dots at the
bottom of Fig. 6 represent five omnidirectional sensors spaced
a half wave length apart on a straight line. Hanning signals of
duration were used. The dotted line encloses an area
in which a beamformer and a matched filter cannot separate
the two targets. The EM–Kalman algorithm was used with a
spatial gradient to track the targets in the plane (angle and
time).

Fig. 7 illustrates a simulated FTV sonar snapshot [4]. The
FTV is a special sonar developed at Scripps Oceanography
Institute to track zoo plankton in three dimensions. This
sonar can be modeled as an 88 sensor array, each with
a narrow (2) beam pattern that is directed to a different
point, together covering a rectangle of 16 16 and a
range of a few meters. The three planes in Fig. 7(a) display
the projections of the 3-D data after match filtering. Lighter
areas represent more received energy. Complete data can be
defined as the data received from each target separately. Using
a model for the beampatterns of the sensors and knowing
the shape of the transmitted signal, the superimposed signal
model can be formulated, and the complete data can be
estimated from the received data in Fig. 7(a) and from a
previous estimate of the target location. This is an E-step
of the EM–Kalman algorithm, and its result is displayed in
Fig. 7(b) and (c). Notice that the limited spatial resolution,
which was imposed by the hardware, is increased by the
algorithm (the resolution is only restricted by the SNR and
the accuracy of the model for the sensors). A 3-D track can
be produced by applying the algorithm to the next snap-
shots.
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(a)

(b)

(c)

Fig. 7. Three-dimensional tracking with the “FTV” sonar. (a) Projections
of the 3-D data of one snapshot after match filtering (“incomplete” data). (b)
Projections of the estimated “complete” data for the first target. (c) Projections
of the estimated “complete” data for the second target.

VII. CONCLUSIONS

In this paper, the EM algorithm was applied to multiple
target tracking for a known number of targets. Three major
algorithms were proposed based on different optimization
criteria.

The “EM–Newton” was a second approximation of the
recursive EM algorithm (maximum likelihood approach). We
showed, through simulations, that by using a model for the
dynamics, the EM–Newton can provide velocity information
and keep track even when targets cross each other or have
high velocity compared with the data rate. However, like other
gradient-based algorithms, the EM–Newton should not be used
with modulated signals if the phases change rapidly between
iterations as this can produce incorrect scores. Investigating
conditions for convergence when the model is exact would be
worthwhile.

The “EM–Kalman” algorithm used EM localization with
Kalman tracking (MSE approach). The algorithm for time-
delayed signals was capable of estimating unknown phase and
energy. This, and its low complexity, make the algorithm
suitable for real-time sonar applications. The EM–Kalman
is composed of matched filtering and signal decomposition
followed by beamforming and Kalman filtering for each of the

targets (Fig. 3). Its computational complexity is, therefore,
roughly times larger than a standard beamformer sonar
that uses a matched filter, shared beamforming, and a Kalman
filter for each target. The signal decomposition complexity is
negligible compared with the search over the parameters.

The “EM-HMM” algorithm that used a discrete model for
the parameters and a Viterbi search for the maximum (MAP
approach) achieved the best tracking performance. On the
other hand, it is computationally complex, especially when
the parameters are defined with high resolution. Gating and
targets to tracks association that are commonly used for the
real-time sonar tracking [8] are also recommended when the
EM algorithms are used for this application. This can prevent
target switching between iterations and suppress the effect of
additional targets (over the that are being tracked). Gating
also decreases the computation complexity considerably and
reduces the probability of false detection of local maxima.

APPENDIX A
DERIVATION OF THE EM–NEWTON ALGORITHM (8) AND (9)

FROM THE RECURSIVE EM ALGORITHM (6) AND (7)

The Taylor expansion, for the “complete” log-likelihood
function is, approximately

(44)

Using the relations

(45)
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and

and taking a conditional expectation, (10) becomes

Defining

and taking a conditional expectation on (44), we have

(46)

where is a constant independent of , and
is being approximated by its expectation

Assuming the parameters were evaluated during the last
M-step [maximizing ] and

(47)

then, substituting (46) and (47) into the (6) (E-step), we obtain

(48)

or

(49)

The maximizing parameters of (49) are given by (8). Using
the notation (9), we obtain

which can be written

where is independent of . Thus, the parameters in (8)
maximize (M-step), and the assumption (47) is
validated. This completes the recursion.

APPENDIX B
M-STEP OF THE EM–KALMAN ALGORITHM

WITH TIME-DELAYED SIGNALS

Using the time-delayed signal definition (28), the M-step of
the EM–Kalman (23) becomes

argmin

Assume that the observation noise vector is not correlated (this
is usually the case for a sensor’s array, where each element in
the vector is related to a different sensor). Denoting

...

we obtain

Real

For signals that are fully inside the integration
interval , we obtain

argmax

(50)

Let be the ’s element of the complete data
vector after a filter matched to the signal
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and define

Then, maximization in (50) is equivalent to
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