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Recursive Expectation-Maximization (EM)
Algorithms for Time-Varying Parameters with
Applications to Multiple Target Tracking

Liron Frenkel and Meir Federfellow, IEEE

Abstract— We investigate the application of expectation- () 4
maximization (EM) algorithms to the classical problem of o K @ ) 02{),
multiple target tracking (MTT) for a known number of targets. ki Rt 0%
Conventional algorithms, which deal with this problem, have IR

a computational complexity that depends exponentially on
the number of targets, and usually divide the problem into a
localization stage and a tracking stage. The new algorithms

achieve a linear dependency and integrate these two stages. ) %
Three optimization criteria are proposed, using deterministic k k , ,
and stochastic dynamic models for the targets. Q')(l‘,ei D)
I. INTRODUCTION @@@@@
L 4 5=

HE PROBLEM of tracking superimposed signals em-
bedded in noise is important in sonar, radar, spectrzib. 1. Active sonar problem with five sensors/(= 5) and two targets

; : : (V. = 2). At each time interval X), the sonar sends a signal that is reflected
estimation, and other fields. The observed dﬁt@)’ yQ(t)' from the moving targets and received by the sensors. The algorithm must

4 y(t), --- can be a nonlinear noisy function of the,gimate the targets’ locations and velocitie§'() from this data.
trajectories’ parameter@™, 65, ..., 91(:)’

N an exact MAP or maximum likelihood estimation of these

. (n)( (n)) parameters will produce an algorithm with a computational
()= Tt 0 (t O0<t<T (1 ) . . .

u(®) Z ok k) Fmlt) @) complexity that is exponential with respect to the number of

n the snapshots and the targets. Consequently, the algorithms
where that are traditionally used for multiple target tracking (MTT)
k time interval index; are not optimal in the sense that the problem is usually
y,.(t) vector of M elements composed of superimposed considered in two separate stagkxalization, in which the
signals Sin) (t, 9’<€n)); new parametersf,(f’) are estimated from the recent ;nap_shot
nx(t) observation noise. y,.(t), and tracking which makes use of some estimations

a{Eﬂm the localization part to produce the final track. Even the
estimation in the localization part is usually not optimal (in a
minimum estimation error sense) because optimality requires

data, and each one of its elements corresponds to one Ser%&pmputational complexity that depends exponentially on the

The received data is a function of the parameters, which CgHmber of the targets.

be the locations and velocities of thé targets, for each time n _th|s paper, we myesugate the appllcat|o_n of the EM
interval (Fig. 1). algorithm to this classical problem of MTT with a known
(n) number of targets. The algorithms that are used integrate the
The parameter$;” themselves can be modeled as a St calizati . . . :
ocalization stage with the tracking stage and achieve a linear

chastic process or as a deterministic vector. The prObIemc'gmputational complexity with respect to the targets number.

. n) )
to estimate the paramete% given a model for parame The algorithms must be sequential in order to avoid accu-

ters’ dynamics. A direct attempt to solve the problem W'tpnulating data and calculations and to produce a continuous

parameters’ estimate.
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Fig. 2. EM-Kalman algorithm.

computationally efficient recursive EM algorithm, the searclvhere H(-) is a noninvertable (many-to-one) transformation.
over targets and time is avoided. Applying, further, a Newtohhis relation means that we observe the complete data only
approximation, we obtain a new, fast stochastic algorithm thirough a noninvertable transformation, where this transfor-
benefits from the given model. mation generally causes a reduction in the available data. In

In Section IV, we describe a second approach that usethg superimposed signals problem, the incomplete ¥aia
Bayesian model with MSE estimatiortriterion. The parame- sum of the signals in (1), and the complete d&taan be the
ters are modeled as a stochastic process, and the observatservation of each signaﬁ")(t, 9,&")) separately.
are a nonlinear noisy function of this process. In this case, The EM algorithm starts with an arbitrary initial gue%@)
complete integration of the localization and the tracking ihereafter denoted®), which is the current estimate éfafter
not possible. We use the EM algorithm for localization ang iterations of the algorithm). The subsequent iteration cycle
Kalman filtering for tracking with feedback to the localizatiorcan then be described in two steps as
stage.

In Section V, we take a third approach, which uses step:
a Bayesian model withMAP estimation criterion. The computeQ(e, @(p)) - E{log Fx(@: 0)|Y = y; @(p)} )
parameters’ valueégf) are taken from a finite set of states
(for example, a finite grid of locations). The proce%g‘),
95"), - 9,&"), --- is modeled as a discrete Markov chainM step:
and the probabilistic description of the process is assumed 5 Ap+l
to be known. This process is not observed directly (it is Arg})\/Iax Q(&, e(p)) — 67Ty ®)
hidden). The algorithm that estimates the parameters from the
observed data is described in [5]. In [6] and [7], this algorithiwhere fx (x; 6) is the probability density of the “complete
is applied to tracking time-varying tones embedded in noiséata,” which is a function o, andE{-; 6} is a conditional
We shall refer to this algorithm as tedden Markov model expectation giverd®).
(HMM) algorithm. The HMM algorithm does not reduce the If Q(6, &) is continuous in bott¥ and ¢, the algorithm
exponential dependence of the computational complexity 6Anverges to a stationary point of the log-likelihood function
the targets’ number. However, integrating the EM aIgorithrWhefe the maximization in (3) ensures that each iteration cycle
with the HMM algorithm eliminates this problem. In the nextncreases the likelihood until a local maximum is reached.
section, we briefly review the EM algorithm (see Figs. 2 and We utilize those previc_)us results to develop the algorithms
3). For the derivation of the EM algorithm, see [10]. in the sequel. Three major approaches are proposed.

Il. THE EM ALGORITHM

Given a conditional probability densitfy (y; #), the max- [ll. MAXIMUM LIKELIHOOD ESTIMATION
imum likelihood (ML) estimation of the parameters vector AND THE EM—NEWTON ALGORITHM
from the observed dati is The first approach uses a deterministic model for the param-
6 = argmaxlog fy (y; 6). eters. A “forgetting” mechanism is used to allow changes over
[

time. First, we derive a general algorithm under the assumption
If the vectoré contains several unknowns [such as locationfat the data is characterized by a probability density that is
and velocities of multiple targets at different snapshots in odrfunction of the parameters. We then apply this algorithm to
model (1)], this maximization tends to be very complex.  the special case of superimposed signals. We end the section
One of the reasons why it is difficult to maximize theyith a detailed example of time delayed signals.
likelihood function is that the observed dafds “incomplete.” A. A General Algorithm
Let X denote a “complete data.” For our purposes, the Supposey, (£), ¥x(t), -, yi (),

x -(t) are indepen-
complete data is any vectd¥ such that vk P

dent snapshots (the incomplete data), each with a probability
Y = H(X) density fy (y,., 6x). The parameterd,. are unknown vectors
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that vary according to where each of the statistical expectations of the log-likelihood
6, = Fo,_, (4) is done once and used for the next expectation. The constant

whereF is a constant invertible transition matrix. According’ Was suggested by Weinstein and Feder [1]. For varying
to this model, estimating the last paramefgr will automat- Parametersyy is expected to be a tradeoff between good
ically derive the estimation of all the preceding parameter§acking ability ¢ small) and noise insensitivityy(= 1).
Consequently, the parameters estimation can be accomplish8f algorithm is still suffers from complexity drawbacks.
by a multiparametemaximum likelihoodsearch oré . Using " Appendix A, we will show that the Newton second-order
a computationally efficient recursive EM algorithm, the seard@PProximation of the recursive EM algorithm (6) and (7) is

over the targets is avoided. L&t, zo, - - -, z, - - - represent &S follows.
an independent complete data that is related to the observations
by The recursive EM-Newton algorithm:
e =Fby + I}, S(ypr. Fbr) 8
Hzx), = Y. %) “ N ~
Icyiy =+F TIe F ' 4 Ic(Féy) (9)

The EM algorithm starts with an arbitrary initial gue%(,g)

and, after iterations, estimate®;c by ég?. Each iteration cycle

can be described as having the following two steps: where S(y,, ;) denotes the score vector, add(f) is a

Fisher information matrix corresponding to a single complete
E: Evaluate shapshot, that is

Q(9K, éﬁ?) IE{Ing(iﬂl, L xp O, -, Ok)

A1
Y1, " Yis 95&')}

S(yx, Or) = Ve, log fy (yy; Or) (10)

. Ic(6y) = — E{Vj, log fx(zx; 0r)| 6} (11)

= 3" B{log f(z. Fi—f"e,‘»)‘
=1

Notice that for ¥ = ldentity (constant parameters) and for

0 ~ =1 (no forgetting factor), this algorithm becomes
Y, Yk 91(}

~
-~

I -1

> Ie(6))

i=1

E{log Iz, Fi_KHK)
1

il A 5 i
Y Uk } Orr1 = 6 + S(Ypy1, Or)

T

(D) A(U+1) and for a small change dfe(é;) near the ML estimatior,
l\ggx Q(9K7 9;«) — Oy we obtain approximately

where E{+; é§j>} denotes a statistical expectation with respect . . A 71 A
to the last parameter estimation. In each iteration, all the Ortr = O + [klc(ek)} SYrt1: Or)
data has to be processed. Our goal is, however, to obtain

a recursive (sequential) method. We follow the sequentighich is a stochastic approximation algorithm suggested by
algorithm proposed by Titterington for constant parameters [Zliterington [2] for constant parameters. The conventional

and the algorithm becomes the following. approach to handle time-varying parameters (see [9]) is to

- e EM aloorithm for det i tical substitute the converging series KLwith a small positive
e recursive algorithm for deterministicaly ; ; ;
varying parameters: ;:r:);tsggntyo in the algorithm obtained for constant parameters,
E:
Q(ek-l-lv ék) R R . o7—1 R
Ory1 = O +vo |Lec(6 Sy, 0)- 12
= Liop1(6rsr) k1 = Or ’Yo[ ( k)} Unt1, Or) (12)
k+1
= Z ARt This ad hoc procedure can now be replaced by the new
=1 EM-Newton algorithm in order to utilize a dynamic model
- E{log f(a1, Fl*k*l9k+1)|yl; Fél—l} for the parameters.
= YLy (F 10341
+ E{log f(zr+1, Ort )| Yry1s F0i-1} | (6) B, Superimposed Signals Tracking
M: R R Consider the superimposed signals model (1), ana(et
lg/lax Q(Or41, Ox) — g1 (7) be a zero-mean white Gaussian process whose covariance
o matrix is E{n(t)n(r)*} = R6(t — 7).
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The log-likelihood function of the incomplete daga(t) is

1%hMﬂwﬂ—AFN%§:WG¢ﬂT
. R—l [yk(t) _ EN: (") (t 9("))] dt
n=1 13)

where ¢ is independent off. The complete data can be

obtained by decomposing the observed dgtét) into its
signal components (see [3]), that is

(1)(t)
xu(t) = XE“Q? ) (14)
e
where
() = s (t, 9,2")) +a(t).

The total noise was decomposedfocomponents

N

> () =)

n=1

with covariance matricez{n"” (t)*n{™(r)} = R™&(t —

7), where R™ = g("R. The 8(")'s are arbitrary positive

scalars satisfying
N
Z B =1

n=1

and, consequently

IR

H.’L’k( )

where
H=[TT --- 1.

The log-likelihood function of the complete datét) is

1%mmwwq»/mw—mwm*

.A—lT[xk(t) — si(t, On)] dt

- Z/ =7 0= ()]
s (1, 607) ]t

(15)

CR™W” [:c;")(t) _

309
where
(1) (1)
_el(gl) (t 6, )
ey 52 (¢, 62
(V) W (e (N
Lo 50 (1. 00)
"RV 0
(2)
A= _ (16)
L 0 R
The score is
S(Yr: Ox) = Ve, log fy(yp; k)

#*

:2/TRea{ [yk(t) - niijl Séﬂ) (t’ 9’(“”))]
g, [zi: e 9;;))] }dt
o e [ - 3 )|

-R—l[v0(1>s§>( 9,§>),

Vst 04))] }dt.

The Fisher information matrix of the complete data is
Ic(6r) = — E{V}, log fu(s; 6k)| bx}
:E{V&k Real[/ [xx(t) — s(t,61)]"
T

e@
:Real{ / Ve, s(t, 61)* AV, s(t, 9k)}
T

and using (16), we obtain

Te(6y) :Real{/T nzi:l [ngS(t, gl(cn))r
N ION [ngs(t, 9,§">)}dt}
=ika
n=1

wherel¢™ (6;.) is the Fisher information matrix for one target:

Ic™ () = Real{/T [Vel(v'n,)S(t’ 9£")):| *
AT QT V s (t 6] dt}.

*

. A_l [—ngs(t, Hk)}
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Remark: One way of choosing3™ is (") = 1/N. Using this expression, the score and the information matrix
However, different distributions can be used, defining differestin be evaluated, and the EM—Newton algorithm can be used.
“complete” data. Note that the information matrix is initially singular due to

the fact that in this example, the radial and angular rates are
C. Example: Line Array, Far-Field Targets not observed directly, and two observations are needed to gain
with Constant Velocities information about the velocities.

Suppose that the targets are moving approximately withA more careful look at this example reveals a weakness of
constant radial and angular velocities. If the parameters ardh€ algorithm in tracking signals with rapidly changing phase.
This problem is typical to stochastic approximation. Observe

(n)
Tk that
Arl™
(n) _ k ) " . n
0" = in) 17) Oégcn) _ ‘Oéén) eg-arg(a(k N _ ‘Oéén) 6_].277(7-]5 )FC)'
gy

The phasesirg(el™) and energiesa!™| in the example

(n) (n) (n) (n) i ; U
wherer, ™, A7, ¢, and A, are the signal time delay, gpove were assumed to be known constants. This is a good
time-delay rate, angular position, and angular rate, then thgyge| for tracking over periods in which the energy and

dynamic model is phases of the targets do not change considerably. However,

11 00 in the typical sonar tracking case, the energies and phases do
i ime(7)
9’(21 _ F(n)el(cn)’ where F® — 01 00 (18) change. Regarding the erl;l)erg-y trackn’p@k' | can be addgd
0 0 11 to the parameters vecto#§” with a dynamic model that will
00 01 be useful to describe slow changes. The situation is usually
and different for the phase, which is a function of the time delay
yasd 0 7™ Taking the dependence of™ on+{" into account, the
F® gradient becomes
Orpy1 = Fb,, where F = _ .
0 FY Vel(vn)sén) (t, ngn))
The baseband representation of a sigsl 9,&")) that is - - -
received by a line array with targets at far-field and negligible = | —q (S(t - Ty ) + j27ch8(t - Ty ))
Doppler effect is
ed2m d cos(#) 2w d) cos(¢)
(4 pm _ 0 [ () : .0, _ag@s(t _ T,ﬁ"))
Sk (t7 ek )_ak S(t Tk ) ) \:I ej27rd(M> cos(¢)
63277 dD cos(¢)
G2 dD) sin(d))eﬂ”d(1> cos(¢)
where . 0
s(t) envelope of the radiated signal; L an e
d™) position of them’s sensor in carrier wave lengths; j2m dM) sin(p)es2md T cos(@)

a,(c"’) known complex amplitudes.
s(t) is the baseband representation of the modulated signafor this model ofa!™, a small error in the estimation

5‘2 )(t, 91& )) :Real{s,(c )(t—nﬁ ))e JQWFJ} of the range can cause a large error in the p ase and
consequently, an incorrect score. This is a result of an inherent

where F,, is the carrier frequency. Taking the derivatives ofroperty of the likelihood function (13) that, for modulated

T}gn), AT,@, (/);n), andA¢£"), we obtain signals, has many modes. The large pha_se errors_deg_rade
the tracking performance of the stochastic approximation
V9<n>s§€") (t, 92")) algorithm because the estimation of the range must be located

at a smaller neighborhood of the true range in order to justify
the approximation. The algorithm is, therefore, sensitive to
. estimation errors i) that are in the order of H, instead

ei2md!M" cos(9) of errors that are in the order of the duration of the signal

ei2m d cos(e)

= |~als(t—r

(n) (n) envelope (assuming a smooth envelope). Nevertheless, the
0, —« s(t—'r . . .
Tk k algorithm can still be used when the deterministic model
32 AU sin(¢)es2md cos(9) for the dynamics of the targets is good with respect to
: ol . the SNR. The tracking performance is better than the one

T ) of a stochastic approximation algorithm without a dynamic
j2m d(]\l) Sin((/))e‘ﬂﬂ—d cos(¢) model.
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Fig. 3. EM-Kalman algorithm for time-delayed signals.
The algorithms that are described in the sequel are of a mavkere
global nature, and the range estimation does not suffer fatal
errors due to phase errors. W
91 9k
) 6%
6=1.1, Or = . (21)
IV. MSE ESTIMATION AND THE EM-KALMAN ALGORITHM : :
A natural approach to the problem of tracking superimposed Ox QIEA’)

signals is to model the dynamic parameters as a stochastic
process. A reasonable choice would be

This estimation can be accomplished by the Kalman filter
elin) _ F9;(fi)1 tq (19) if sé") (t, 9,&")) is linear. Unfortunately, this is usually not the
case, and a complete integration of localization and tracking
is not possible. [The extended Kalman filter can be used to
3pproximateé,(€") by linearization of the system around the
current state estimate and application of the Kalman filter
to the resulting time-varying, linear system. However, this is
algorithm is suboptimal and fairly complex.]

In the following algorithm, localization, and tracking are
N . two separate blocks (in contrast to the previous algorithm

y(t) = Z s (t, 9,(6")) +mn(t). (20) and to the algorithm in the next section, which integrates
n=1 them). Processing is done at each time interval using only data
received in that interval to update the results of the previous

Note that the parameter veci#jf”, which affects the observed Processing.
datay,(¢), can be shorter than the full parameter veaSt,%ﬁ"i).

Define the relatiorﬁg”) = Ge,ﬁ"). For example, in the line A | gcalization

array case (17), the velocity is not measured directly, and we . . - L
canydefine( ) y y _In order to achieve a maximum likelihood localization,

9,&"’) are estimated from the recent observation using the EM

algorithm. The initial parameter’s value for the EM iterations

was predicted by the tracking stage. This prediction is based

. [T’@] o F 00 0} o AT’@ on previous estimations and, therefore, is close to the actual
? 9 k -

where ¢, is the driving noise of the parameters proces
and 9,&") is the parameters describing th¢h signal thekth
shapshot.

The data observed at snapsiioare

ng

parameter. Thus, only a few EM iterations may be sufficient.
The complete data is defined as the decomposition of

A¢§f) the observed data,(¢) into its signal components (recall

Section llI-B). Since the complete date,(¢) and the in-

) ) (o complete datay,(t) are jointly Gaussian and related by a
Two new algorithms that estimate the paramet#s (the |inear transformation, the complete data can be calculated in
track) from the snapshots datg,(t) using the Bayesian g giraightforward manner (see [3]) as

approach are proposed: one using the MAP estimation criterion

(formulated in the next section) and the other using the MSE

criterion. (E-step:)

The parameter vector that minimizes the MSE criterion is ¢, " ~(n
’ a" =5 (4 0) +

(n)
L

-3 470 )|
=1

b =E{bly, -y} (22)
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The log-likelihood function is given in (15). Taking a

conditional expectation, we obtain The EM-Kalman algorithm

1. Initial states:

E{log fx(zx; gk) |y} forn=1,2, ..., N (signals):
N . Guess statg0, 4.
~(n n A(n ’ |0
:c’—Z/[xi)(t)—sé)(t,@(c))} Set initi :
— Jr et initial error varianceP, o
LR [ﬁi@(t) _ sé") (t é',(cn))}dt. (23) Fork =1, 2, --- (time intervals)
2. Localization:
The parameterg(™, which maximize this expression, are the forp=1,2 -, Np (|.terat|ons number):
recent EM estimation fo@&6, . This maximization is equivalent forn=1,2,---, N (signals):
to E-step:
£.(1n) (n) j(n)
x, =s, |t GO,
(M-step:) A ( ""‘_1)
~ ~ * N
6 = i / 20 (t) — sV (¢, 67 ™) (¢ G
K argg;m o |:$k (t) — 3y, ( » O )} + B |y (t) — E;Sk (tv Geklk—l) (26)

R a0 — s (1 617 ]t where 374, = 1

- M-step:
Note that although the initial parameters for each target are P

close to final EM estimates for that target, target switching can é,(c") = argmin / [wi") (t) — s,(c") (t, é,(&"))r
T

still occur during the EM iterations for low SNR. Therefore, it gt
is advantageous to associate the EM estimates with the tracks 1 Ta(n) () “(n)
(e.g., by a minimum distance search or gating). In addition, R [xk (t) — s (@ 0 )} (27)

note that in the two other algorithms described in this paper,| 3 kaiman tracking:
localization and tracking are unified, and consequently, a ‘ 19 N (sianals)-
separate association of tracks to target locations is not required. orn=1,2 ., N (signals).
K& =P _ G [GP;’;L_IGT n RWJ
B. Tracking Fn) _ f(n) (n) | g(n) 4()

In the tracking stage, the estimated parameé?% pro- O =0pr — Ky [9’“ _Gek/k—l}
duced by the localization stage are used as the observed data.
The model for the actual paramete&g‘), which is stated in
(19), is repeated here for convenience, and the EM estimates 4™

. . k+1
are modeled as a noisy measurement as in /

P =[1- K QP
k :Fegcn)

P =FPMFT 4 Q

kt1lk —
o =Fo”, +q, (24)

where the parameters vectéfc’”) is composed of the time-

The driving noise and the EM-estimation noise are modeleiélay parameter™ and the vectors\™, which holds other
as Gaussian, with covariance matrix@s = E{qg;q;} and parameters (such as azimuth and elevation)
Rpm, = E{nrm, iy, }- The choice ofry, depends on the
observation noisery, (¢) and on the shape of the likelihood : T’E")
function in the neighborhood (ﬂ,ﬁ"). Using the Kalman filter, Eo (29)
an approximated MSE estimation can be evaluated, and a
prediction can be made, which can be used as initial the,,

parameter for the next EM localization stage. See the EN% IS an unknoyvn additional determlnlstl_c parameter.
Kalman algorithm in the next column The matched filter can now be placed in the sensors level

as in
C. Example: Time-Delayed Signals n n n " n
L OV O N . . yl(\rﬂ-)“;v (TIE )) = / y;s )(t)s (t - T}i ))dt (30)
In many applicationss; (¢, 6,) is a time-delayed signal T

of the form s\ (r) = / s(t)s" (t — 1) dt (31)
T

e gy _ () [, () (n)
%k (t’ O ) = S(t T )a(w’“ ) (28) andEs = [.|s(t)|* is the signal's energy.
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Substituting (30) and (31) in (26) and (28) in (27) (sewhere the parameter vectéris composed of the vectoﬂi")

Appendix B), the following algorithm is produced.

The EM-Kalman algorithm for time
delayed signals:

1. Initial states:
forn=1,2, ..., N (signals):
guess state0, 47

set initial error variancef;|o

Fork=1,2,- -

2. Localization:

forp=1, 2, ---, Np (iterations number):
forn=1,2, ---, N (signals):

E-step:

30,6 =)o (0 a0

N
+ Bn | yur, (8) — Z & sk
i=1

(el

M-step:

o7, ) = S, () éib, ..

m=1

) (ngn)>7’;:,1m

éé") = argmax ‘g('r,gn), zb,g"))‘

Tk@)} 745,(\,70
o () = ~on2 (4 (5))
()| /-

(| _
‘O‘k M 9
D 7o (417
m=1
3. Kalman tracking:
forn=1,2, .-, N (signals):

K;Cn) = PS}L—IGT [GPEJ;L_IGT + REMJ

o =00~ K00 - 6|
P =1~ KkG]PS;Ll

él(:i—)l/k :Fégcn)

P =FPUF +Q

(32)

V. MAP ESTIMATION AND THE EM-HMM A LGORITHM

An alternative Bayesian criterion is the MAP estimation

6 = Ingxx{f(9| Y - ?Ik)}

(33)

(21) and modeled as a discrete stochastic process (19). The
observed datg is composed of superimposed signals that are
a function of this process (1). Here, an exact solution can be
achieved by maximizing the conditioned distribution (13) over
all the parameters. However, each paraméi@r has a value
from a set of N, discrete states (for exampléy, possible
combinations of locations and velocities) and direct search
over the parameters requires calculation of the likelihood
function (13) for each state, target, and time interval, namely,
NNK calculations. The number of calculations is, therefore,
exponential with respect to the number of observatiéghs
and to the number of signal®’. In this section, we first
formulate an HMM problem and briefly refer to an algorithm
that reduces the computational complexity with respect to the
observations’ numbe#(. Then, we integrate this algorithm
with the EM algorithm and reduce the dependence with respect
to the number of signalg/ in the same way.

A. Formulating the HMM Problem

For discrete parameters, the stochastic model (19)
is a discrete, first-order, Markov chain model. Let
{51, Sz, -+, Sn,} denote all the possible states of the vector
é;") (Ns is the number of all the possible combinations
of the parameters’ values for a single observatién
and a single signaln). The state transition probability
Ay = {aiiyin jrjoin ;» Which is the probability that
the IV targets reach state&s,,, S;,,---,S;, from state
S;., 8, ,8;, in a single step, is determined by the
probability distribution of the driving noisg. One possibility
of choosing this distribution is a discrete approximation of
the normal distribution

Qiyig-in j1jz--Jn
1 2 N
= P{el(x-lzl = Sjl? 912-21 = szv T 9}2+)1 = SjN|
1 2 N
el(c) =8i,, el(c):Sizv R el(c ) :Siw}
N
:c-H/ exp{—L[s; — FS,]'Q7'[s; — FS,]}
=1 SjC]\‘rsj
- ds; (34)

where N, is some neighborhood o, which is defined for
the specific chosen parameters. The initial state distributions
are

1 2 N
ivigemin :P{eg V=8, 080 =8, -, 68" = Sm}
Iy ={mi iy in }- (35)

The processﬁi"’), 9§"’), _— 9,2"’), --- is hidden; in other
words, it is not observed directly. The observatigpé&) in (1)
are probabilistic functions of the process(y(t)) is defined
as the continuous probability distribution of the snapshot data
y;(t) that is conditioned by stat€;. Let B, = {b,(y(¢))}. For
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Gaussian observation noisgt), with covariance matrix®

bjy, - in (Wi (2))
= f'yk(t) (yk(t)wg) = Sjl? T el(cN) = SjN)

N *
. _ _ (n) , ‘ ‘ ‘ ‘ ‘
=c eXp{ /T [yk(t) E:I s (¢ SJ”)‘| 50 o 150 200 250
n= ime
N
R [yk(t) -3 s, Sjn)] }
n=1

The probability measure4,, B, I1,, and the states number %150
N¥ constitutes a complete specification of an HMM. TheS o,
general HMM algorithm that uncovers the hidden part ofe
the model, i.e., find:ﬁé") that satisfies (33) given the model

@

200

50

parameters, is described in a tutorial fashion in [S]. The heart o———— %% 30 35 45 15 =
of this HMM algorithm is the Viterbi algorithm, in which the Snapshots
new probability of each state combination is calculated from (b)

the one saved for timé& — 1 and from the new datg,,(?).
This probability distribution is denoted Wy (41, j2, - -+, jn),
Jjn € {1--- Ns}. The number of calculations is, therefore, »1s0
proportional to(N2)? and is exponential with respect to &
the signal’'s numberV. In a typical tracking sonar problem, E

for example, even two superimposed signals tracking may be 50

200

100

unfeasible. 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Q 5 10 15 20 25 30 35 40 45 50
Snapshots
B. An Integrated EM—HMM Algorithm (c)

The EM algorithm can be used to reduce this exponentiy. 4. Comparison of stochastic approximation algorithms. (a) First snap-
dependence in the targets’ numbrto a linear dependence.Shot the original signal (-), and the noisy signal (). (b) Actual track (-) and a
. . . ... __conventional stochastic approximation algorithm estimations)(dc) Actual
The complete data is defined, again, as the decompositionydk (-) and the EM—Newton algorithm estimates £,
the observed datg,(¢) into its signal components (14).
In this case, the state transition matrix fame signal from

statee,(c )= 8, to statee,(c +)1 — S, is A= {ay}, where where '™ track parameters of th&/th target

aij:P{el(c—l—)lzsjw;c):Si} .
m _ %
=c- / exp{—3[s; — FS,]"Q '[s; — FS;]}ds;. =10 (38)
8jENs; :
(36) 73

The initial state distribution ig; = P{eé") =S8}, 1T ={m}, We will use this algorithm as the M-step in a EM-Algorithm.
and the continuous probability distribution a@f™(¢) given The E-step, which produces the estimations of the complete
statee,(C") = S, can be defined aB = {bj(xin)(t))}, where data, is similar to the one used for the EM—Kalman algorithm

(22).
b x(f‘) 1) = fx. x(f‘) ¢ 9(7) —S. To calculate the M-step (37) using the Viterbi algorithm,
J( a )) X"(t)( e (10 J) we need to define the quantié)i")(j), which is the best score
—c. exp{_/ [z(n)(t) _ s(")(t S")r (highest probability) along a single track, affeobservations,
U A which accounts for the firgt observations and ends in state

R0 -0 57)]
)
The probability measured, B, II and the states number l(n)’ 2 k;) - -
Ns define an HMM that uses the given data for observations. O ' =Sj® ,®y 0,3y (D)]A4, B, 1, 9}
Therefore, given the complete data, an HMM algorithm can (n) Hn) (n)
be utilized to obtain TE o B P{91 2Oz Oy
1 Y2 by 0y

g — max {f(e(n)|$§n) 5”(1?))} (37) elgn) _ Sj|$§n), xén)’ . $§€n) (), A, B, 11, 9}
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wherec is independent of. By induction A recursive algorithm, which uses the last observation
and does not accumulate data, can be now formulated. In
6,&")(]’) = max [6,@1@)%} b; (zé@(t)). (39) each iteration, a new observatiok) (is used, and a new
iy LTS INVE

complete data for timé is estimated (E-step). The complete
data for the old observations is not changed since the old
observations data is not saved, and their complete data can
(n), . o . . not be estimated. The M-step produces the parameters at time
i (7). This index is the argument that maximizes (39). k that maximize the track probability given the complete data.

Th.e _E_M pararqt(ai;er;, in this case, are all the trac_k _p_aramet ?ﬂy one probability matrix is required to be saved in order
The initial guesd; 7, is, therefore, a guess of the initial tracky 2-hieve this maximization.

of the nth target. _ The parameters at timgé are associated with the track
The integrated algorithm can now be stated as follows. ., ered until that time, and each iteration a new parameters

vector is added to the track. The initial parametéﬁ@ are,

In order to keep the track that maximiz@(é”)(j), the index
1 of the previous most likely stat§; is saved in the array

The batch EM-HMM algorithm: therefore, the initial guesses for signalfor the state before
1. Initial track guess the first observation, and not a full track, as in the batch
forn=1,2,---, N (signals): algorithm.
uess tracki0, 6 (1 < k< K
g _k# ) roll Sk < K) The recursive EM-HMM algorithm:
forp=1,2 ---, Np (EM iterations): .
» R o 1. Initial state guess
- ecursion. forn=1,2, .-, N (signals):
fork=1,2, .., K (snapshots): )
forn=1,2,---, N (signals): guess statet 070 (40)
for k=1, 2, --- (observations):
E-step: 5 R .
S0 _ o (t 4 ) . Recursion: |
kp — %k \" Vkop-l forn=1,2,---, N (signals):
N R E-step:
4+ 80 |y () = S s (¢, 4 )
B |yi(t) ; k ( k,pfl) £ — g (t, P )
where Y 8, =1 (1<k<K) N R
+ B |u) =Y s (¢, FOYY
e B |t = X2 o7 (1 PO
forj=1,2,---, Ns (new state) M-step:
ijj( Yf;(t)) (k=1) forj=1,2, ---, Ns (new states indices
B (£ _
6’§n)(J) == max |:6](:]_)1(SZ)CL“:| W]b] (:L.l (t)) (k B 1)
S0 tsis s (n) (Y _ 5 (4) }
'bj (:c;:;z)(t)) (2 <kZ K) 6k (J) N Sijrg}éf\’s[ k=1 )% (41)
; (2 (1) (k > 2)
${V(S;) = argmax [5,&’?1(5i)aij] (2<k<K) ’( , )
S;,1<i<Ng Mgy — aramax 16" (S,
3. Termination: v (55) SiylgﬁiSNS [ ko ”)a“}’ (42)
forn=1,2, ---, N (signals): (optional) (k> 2)
Lf,:‘)p = argmax[éf,?)(i)}, 3. On line estimate:
- LNy forn=1,2,---, N (signals):
Ok ’» :Sigy}p (k= K) z‘;") = argmax[é,i")(i)},
. 1<i<Ng
4. Backtracking
fork=K—1,K—2,---,1 (snapshots): o =50 (k>2) (43)
forn=1,2, ---, N (signals): 4. Backtracking (optional)
= (), 9= for =12, 1
: (observations):
For sufficient resolution of the parameters’ quantization, the forn=1,2,..-, N (signals).
algorithm above is an exact EM algorithm and will produce i =) (Lgi)l), o™ = 5.
parameters that locally maximize the likelihood function (33). !
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Fig. 5. Resolution performance. (a) First snapshot, the original signal (=), the noisy signal (-), a match filter resolution cell (..). (b) EM-Iyesitton a
with A = 0.9. (¢) EM—Newton algorithm witth = 0.6. (d) Conventional stochastic approximation algorithm with= 0.4. () EM—Kalman algorithm. (f)
Recursive EM—HMM algorithm. (g) Backtracking. (h) Batch EM—HMM algorithm. (i) EM—Kalman algorithm for signals with unknown phase and energy.

VI. SIMULATION duration of 7" = 31 or 7" = 101 time units were used for all

Simulations were performed for the case of a sonar wifiimulations. The carrier period was normalized to a single time
linear array of omnidirectional sensors. The algorithmidhit (£ = 1). The delayed complex baseband representations
achieved a high resolution in range and azimuth, in lo@f the signals were sampled at a rate of one sample per time
SNR, and random phase. The EM-Kalman algorithm wa&4it and a white Gaussian noisgk), which was 5 dB larger
implemented for the FTV three-dimensional (3-D) sondhan the amplitude of the signdE(n(k)n(k)*) = 10%/10),

[4], and tested with real data. Hanning signdlg¢) = was added. Snapshots of the Hanning baseband signals before

(0.5 — 0.5co9q2nt/T))cog2nFet) for 0 < ¢ < T) with and after adding the noise are shown in Figs. 4(a) and 5(a).
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Fig. 4 demonstrates the advantage of using the EM—Newton 54|
algorithm over a conventional stochastic approximation algo-
rithm when there is a good dynamic model for the targets.
Fig. 4(a) shows the first snapshot of two Hanning signals of
duration7 = 31 time units that were received by a single
sensor. The time delay of the signal represents the targets’
ranges. In the following snapshots, the ranges change, andioor
targets maneuver in sinus-like tracks. Fig. 4(b) shows the time-
delay estimations of the conventional stochastic approximation
algorithm (12) withAy = 0.4. Tracking was not stable for any
Ag. Fig. 4(c) shows the EM—Newton algorithm (8) and (9)
estimates, using a linear model for the trggk= 0.6). Clearly,
for this case, there is an advantage of using the model-based *°|
EM-Newton algorithm.

Fig. 5 compares the algorithms’ resolution performance for
known energy and phase. Two Hanning signals of duration
T = 101 were received by five omnidirectional sensors
spaced half a wave length apart on a straight line. These ‘ , , . , , ,
signals had a longer time span than the signals of Fig. 1 and, -60  -40 20 0 20 40 60
_therefor?’ were more difficult to_separate. T_he do_tted lines Fig. 6. Two-dimensional tracking with five omnidirectional sensors.
in the figures bounds a resolution cell. Inside this cell, a
conventional matched filter fails to separate the two targets.

The signals are then getting closer, moving in curved trackaly a small degradation in tracking. Phase estimation required
that are modeled by straight lines. All the algorithms manageore EM iterations for each snapshot. The track in Fig. 5(i) is
to track for this SNR and resolution. the result of the EM—Kalman algorithm for the same example,

The EM-Newtonalgorithm was used with forgetting factorwith unknown energy and phases of the signals, and 16
of A = 0.9 and initial time delay within the signal durationiterations per snapshot.

[Fig. 5(b)]. A is the only parameter that has to be predeter- Figs. 6 and 7 demonstrate an application of the algorithms
mined. The tracking was found to be very robust with respe@ tracking two and three dimensions. The five dots at the

to this parameter, and tracks were not lost for ldwalues, bottom of Fig. 6 represent five omnidirectional sensors spaced
in spite of the noisy tracking [see Fig. 5(c) for = 0.6]. a half wave length apart on a straight line. Hanning signals of
The conventional stochastic approximation algorithm fails tduration7 = 101 were used. The dotted line encloses an area
follow the crossed track since it does not estimate the velocity which a beamformer and a matched filter cannot separate
[Fig. 5(d)]. Notice that the reason for this failure is differenthe two targets. The EM—Kalman algorithm was used with a

from the example of Fig 4. For the example of Fig. 5, thepatial gradient to track the targets in the plane (angle and
EM-Newton algorithm uses the better model to resolve thiene).

targets interference, whereas in the example of Fig. 4, it wasFig. 7 illustrates a simulated FTV sonar snapshot [4]. The

used to keep the location estimation in the neighborhood BTV is a special sonar developed at Scripps Oceanography
the signal. Institute to track zoo plankton in three dimensions. This

The EM-Kalman algorithm for time-delayed signals hassonar can be modeled as anx88 sensor array, each with
a more global nature and, therefore, was less sensitiveamarrow (2) beam pattern that is directed to a different
starting conditions and temporary losses of track. On the othmmint, together covering a rectangle of 16 16° and a
hand, more parameters must be established in order to seamge of a few meters. The three planes in Fig. 7(a) display
satisfactory Bayesian dynamic model for the system. Resulte projections of the 3-D data after match filtering. Lighter
are plotted in Fig. 5(e) for four iterations per snapshot. areas represent more received energy. Complete data can be

Therecursive EM—HMMalgorithm results for this example defined as the data received from each target separately. Using
are shown in Fig. 5(f). The track is not smooth since every neavmodel for the beampatterns of the sensors and knowing
location may be the ending point of a completely differenthe shape of the transmitted signal, the superimposed signal
track. Backtracking can be done at each stage to reveal thedel can be formulated, and the complete data can be
track that was last chosen. The track of Fig. 5(g), for examplestimated from the received data in Fig. 7(a) and from a
is the result of a such back tracking taken at the last snapspotvious estimate of the target location. This is an E-step
of Fig. 5(f). This is the most probable track under the modef the EM—Kalman algorithm, and its result is displayed in
assumptions, given the complete data estimation. Using thig. 7(b) and (c). Notice that the limited spatial resolution,
track of the recursive EM—HMM algorithm in Fig. 5(g) as arwhich was imposed by the hardware, is increased by the
initial parameter (iteration #0), the batch EM—HMM algorithnalgorithm (the resolution is only restricted by the SNR and
produces the track of Fig. 5(h). the accuracy of the model for the sensors). A 3-D track can

The algorithms were tested with modulated signals, te produced by applying the algorithm to the next snap-
unknown energy and phase. The energy uncertainty introducsubts.
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VIl. CONCLUSIONS

In this paper, the EM algorithm was applied to multiple
target tracking for a known number of targets. Three major
algorithms were proposed based on different optimization
criteria.

The “EM—Newton” was a second approximation of the
recursive EM algorithm (maximum likelihood approach). We
showed, through simulations, that by using a model for the
dynamics, the EM—Newton can provide velocity information
and keep track even when targets cross each other or have
high velocity compared with the data rate. However, like other
gradient-based algorithms, the EM—Newton should not be used
with modulated signals if the phases change rapidly between
iterations as this can produce incorrect scores. Investigating
conditions for convergence when the model is exact would be

Transmiters

Receivers 40 Range worthwhile.
The “EM—Kalman” algorithm used EM localization with
@ Kalman tracking (MSE approach). The algorithm for time-

delayed signals was capable of estimating unknown phase and
energy. This, and its low complexity, make the algorithm
suitable for real-time sonar applications. The EM-Kalman
is composed of matched filtering and signal decomposition
followed by beamforming and Kalman filtering for each of the
N targets (Fig. 3). Its computational complexity is, therefore,
roughly ¥V times larger than a standard beamformer sonar
that uses a matched filter, shared beamforming, and a Kalman
filter for each target. The signal decomposition complexity is
negligible compared with the search over the parameters.
The “EM-HMM” algorithm that used a discrete model for
the parameters and a Viterbi search for the maximum (MAP
approach) achieved the best tracking performance. On the
other hand, it is computationally complex, especially when
the parameters are defined with high resolution. Gating and
targets to tracks association that are commonly used for the
real-time sonar tracking [8] are also recommended when the
(b) EM algorithms are used for this application. This can prevent
target switching between iterations and suppress the effect of
additional targets (over th&' that are being tracked). Gating
also decreases the computation complexity considerably and
reduces the probability of false detection of local maxima.

APPENDIX A
DERIVATION OF THE EM—NEWTON ALGORITHM (8) AND (9)
FROM THE RECURSIVE EM ALGORITHM (6) AND (7)

The Taylor expansion, for the “complete” log-likelihood
function is, approximately

log fx (@r+1;0k+1)

55 =log fx(®rr1; FOx)+(Brt —Fék)TVng
“log fx (#r413 06415, , s, +1(Or41 —Fék)Tvng
“log fx (®r415Ok41)lg, i, (Ox41—F6). (44)
(c) Using the relations
Fig. 7. Three-dimensional tracking with the “FTV” sonar. (a) Projections VQA»+1 log fx (zk—l—l% 9k+1)

of the 3-D data of one snapshot after match filtering (“incomplete” data). (b) _ log -0
Projections of the estimated “complete” data for the first target. (c) Projections ve’““ og fr (yk‘H’ k"'l)
of the estimated “complete” data for the second target. + Vo, log fx/v(®ry1|Urirs Ory1) (45)
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and APPENDIX B
M-STEP OF THE EM—KALMAN ALGORITHM
E{V0k+1 log fX/Y(-""k+l/yk+1§ 9k+1)|yk+l} =0 WITH TIME-DELAYED SIGNALS
and taking a conditional expectation, (10) becomes Using the time-delayed signal definition (28), the M-step of

the EM-Kalman (23) becomes
SWYpi1s Or1) = E{Vo,,, log fx(@ri1; Ohr1)|Yps1)-

Defining 6 = a;%Tm /T [ﬁgp(t) _ agps(t _ T,§">)a(¢,§">)} *
Ie(yy11, For) .R-! [ﬁém (t) — a;%(t _ r,§">)a(w,§"))] '

= _E{ngﬂ log fx (®r+1; 9k+1)|ak+1=p‘ék|yk+1}
Assume that the observation noise vector is not correlated (this

and taking a conditional expectation on (44), we have is usually the case for a sensor’s array, where each element in

E{log fx(€r11; Orr)|Yrsis Fo) the vector is related to a different sensor). Denoting
=c+ (Opgr — Fo)T S(Ysy1; Fé) [Tk, 0 0
— 2 (Or1 — Fo)TI Ic(yy 1, FOL)(Ory1 — FOh) R, = o
~ e+ (Oka1 — FOL) T S(ypp1s Fby) L o i, b
— (041 — FO)TI(FO,)(Ory1 — FOy) (46) BRI ay (w,i’”)
wherec is a constant independent &f 1, andIc(Féy; yy., 1) () 2 () ) as (Z/}]Sn))
is being approximated by its expectation PMOES ’. ) a(% ) = "
Te(F6) [ (1) an (T/}zg ))

Assuming the paramete& were evaluated during the IastWe obtain
M-step [maximizingL(6;)] and

Lk(Hk) =C— %(Hk — Hk) jck(Hk — ék) (47) één) = argmin Z / k m

) ) . . 9”2”) m=1
then, substituting (4(“1) and1 47 |nt(? th; (6) (E-ftep), W(? obtain . [Agfzn(t) ~ ;C") ( ,E")) i (1/);"))}*
L1 (6ry1) = — 7§(F7 Opy1 — ) Lep(F 01 — 61) (n) (n) (n) (n)
 (Brss — FO) Sy, s Féy) R0 = s (6= Jam (v17)
— YOpi1 — FO)TI(FO)(01p1 — FOy, _ M
2( Rl k) c( k)( Pt k) 92@ = argmax Z /7;1"1
(48) égjﬂ m=1
or {2 Real ("), (ol s* (t = 7 )z, (v”)]

Lig1(brq1) = — 2(0rq1 — FO)T ) ) )
—1T%,. -1 i i s (t— )| a z/)(") .
. {’yF Iep F +Ic(F9k)}(9k+1 —Fﬁk) k m\ Yk

+ (Ort1 — FO)TS(ypp15 Fh). (49) _ " o _ _
For signalss(¢ — r,; /) that are fully inside the integration
The maximizing parameters of (49) are given by (8). Usinigiterval T, we obtain
the notation (9), we obtain

~ Jaf®

Lit1(6r41) o = argmax{ ‘ (n )‘ Real [ef arg(al”) Z
=d — 5{0k41 — 9k+1 +Ick+15(yk+17 F9k)}T e m=l
(A —|—jc,:i13(yk+l, Fo)T y T
5 Wi Fék) — ‘a,(cn) 2Es Z 7’,:71m U (z/;,in)>‘2} (50)
which can be written m=

Li1(Org1) = " — (Org1 — Or1) Teri1(Opsr — Orpr)  LEE a?l(\?%k (T (")) be them’s element of the complete data

vector after a filter matched to the sigrk)
wherec’ is independent o#;..;. Thus, the parameters in (8)

maximize Ly41(0x+1) (M-step), and the assumption (47) is 371(\?% ( ’En)) /a:i") (t)s" (t— T;E"))
validated. This completes the recursion. o "
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and define [7] X. Xie and R. J. Evans, “Multiple target tracking and multiple fre-
M quency line tracking using hidden Markov modellEEEE Trans. Signal
. _ Processingyol. 39, pp. 2659-2676, Dec. 1991.
Q(ngn)a wﬁf‘)) = Z A (T/J,(Ln))xl(\?%k . (T,En))Tk’lm. [8] S. S. Blackman,Multiple-Target Tracking with Radar Applications.
' Norwood, MA: Artech House, 1986.
[9] L. Ljung and T. Sderstdm, Theory and Practice of Recursive ldentifi-

m=

Then, maximization in (50) is equivalent to cation. Cambridge, MA: MIT Press, 1987.
[10] A. P. Demster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
H(n n n from incomplete via the EM algorithm J. Roy. Stat. Socser. 39, pp.
6 = argmax‘g(ﬂg LS ))‘ from incomp 9 J. Roy S pp

() ()
te Wy,

s o) = o o)
(6)
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